The Riemann problem for nonconvex scalar conservation laws and Hamilton-Jacobi equations
نویسندگان
چکیده
منابع مشابه
Numerical Schemes for Conservation Laws via Hamilton - Jacobi Equations
We present some difference approximation schemes which converge to the entropy solution of a scalar conservation law having a convex flux. The numerical methods described here take their origin from approximation schemes for Hamilton-Jacobi-Bellman equations related to optimal control problems and exhibit several interesting features: the convergence result still holds for quite arbitrary time ...
متن کاملA note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations
Let Ω��2 be an open set and f�C2(�) with f” > 0. In this note we prove that entropy solutions of Dtu+Dxf(u) = 0 belong to SBVloc(Ω). As a corollary we prove the same property for gradients of viscosity solutions of planar Hamilton–Jacobi PDEs with uniformly convex Hamiltonians. DOI: https://doi.org/10.1142/S0219891604000263 Posted at the Zurich Open Repository and Archive, University of Zurich ...
متن کاملEnvelopes and nonconvex Hamilton–Jacobi equations
This paper introduces a new representation formula for viscosity solutions of nonconvex Hamilton–Jacobi PDE using “generalized envelopes” of affine solutions. We study as well envelope and singular characteristic constructions of equivocal surfaces and discuss also differential game theoretic interpretations. In memory of Arik A. Melikyan.
متن کاملUndercompressive Shocks and Riemann Problems for Scalar Conservation Laws with Nonconvex Fluxes
The Riemann initial value problem is studied for scalar conservation laws whose uxes have a single innection point. For a regularization consisting of balanced diiusive and dispersive terms, the traveling wave criterion is used to select admissible shocks. In some cases, the Riemann problem solution contains an undercompressive shock. The analysis is illustrated by exploring parameter space for...
متن کاملMetric Formulae for Nonconvex Hamilton–jacobi Equations and Applications
We consider the Hamilton-Jacobi equation H(x,Du) = 0 in Rn, with H non enjoying any convexity properties in the second variable. Our aim is to establish existence and nonexistence theorems for viscosity solutions of associated Dirichlet problems, find representation formulae and prove comparison principles. Our analysis is based on the introduction of a metric intrinsically related to the 0–sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1983
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1983-0718989-x